Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(5): e1011409, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37200377

RESUMO

The hallmark of severe COVID-19 involves systemic cytokine storm and multi-organ injury including testicular inflammation, reduced testosterone, and germ cell depletion. The ACE2 receptor is also expressed in the resident testicular cells, however, SARS-CoV-2 infection and mechanisms of testicular injury are not fully understood. The testicular injury could be initiated by direct virus infection or exposure to systemic inflammatory mediators or viral antigens. We characterized SARS-CoV-2 infection in different human testicular 2D and 3D culture systems including primary Sertoli cells, Leydig cells, mixed seminiferous tubule cells (STC), and 3D human testicular organoids (HTO). Data shows that SARS-CoV-2 does not productively infect any testicular cell type. However, exposure of STC and HTO to inflammatory supernatant from infected airway epithelial cells and COVID-19 plasma decreased cell viability and resulted in the death of undifferentiated spermatogonia. Further, exposure to only SARS-CoV-2 Envelope protein caused inflammatory response and cytopathic effects dependent on TLR2, while Spike 1 or Nucleocapsid proteins did not. A similar trend was observed in the K18-hACE2 transgenic mice which demonstrated a disrupted tissue architecture with no evidence of virus replication in the testis that correlated with peak lung inflammation. Virus antigens including Spike 1 and Envelope proteins were also detected in the serum during the acute stage of the disease. Collectively, these data strongly suggest that testicular injury associated with SARS-CoV-2 infection is likely an indirect effect of exposure to systemic inflammation and/or SARS-CoV-2 antigens. Data also provide novel insights into the mechanism of testicular injury and could explain the clinical manifestation of testicular symptoms associated with severe COVID-19.


Assuntos
COVID-19 , Masculino , Camundongos , Animais , Humanos , COVID-19/metabolismo , Testículo , SARS-CoV-2 , Efeito Espectador , Inflamação/metabolismo , Camundongos Transgênicos
2.
AIDS ; 37(7): 1177-1179, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36927653

RESUMO

This study evaluated the association between the transmigration of monocyte subpopulations that contributes to atherosclerosis development, along with surrogate biomarkers of inflammation and atherosclerosis, through carotid intima-media thickness (cIMT) measurements of 72 people with HIV (PWH) on suppressive antiretroviral therapy (ART). We found that the transmigration of intermediate monocytes was positively correlated with D-dimer and cIMT, suggesting that intermediate monocytes may have a greater propensity to promote cardiovascular disease (CVD) in PWH on ART.


Assuntos
Aterosclerose , Doenças Cardiovasculares , Infecções por HIV , Humanos , Infecções por HIV/complicações , Infecções por HIV/tratamento farmacológico , Monócitos , Fatores de Risco , Espessura Intima-Media Carotídea , Aterosclerose/complicações , Doenças Cardiovasculares/complicações
3.
Skin Pharmacol Physiol ; 36(1): 27-37, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36693328

RESUMO

INTRODUCTION: Tumor necrosis factor (TNF)-α released after follicular injury such as that caused by plucking plays a role in the activation of hair regeneration. Microneedle (MN) treatment is applied to the scalp to increase permeability and facilitate the delivery of any number of compounds. Because the MN treatment causes injury to the epidermis, albeit minor, we reasoned that this treatment would lead to a temporary TNF-α surge and thereby promote hair regeneration. METHODS: To investigate the effects of MN-treatment-induced microinjury and TNF-α on hair growth, we used C57BL/6N mice which were divided into six experimental groups: three groups of 1) negative control (NC), 2) plucking positive control (PK), and 3) MN therapy system (MTS) mice; and three groups identical to above were treated with a TNF-α blocker for 3 weeks: 4) NCB, 5) PKB, and 6) MTSB group. RESULTS: After injury, TNF-α surge occurred on day 3 in the PK group and on day 6 in the MTS group. Wnt proteins and VEGF expression were markedly increased in the PK group on day 3 and on day 6 in the MTS group compared to the NC group. Following wound healing, only MTS and PK groups displayed thickened epidermis and longer HF length. Within the 2 weeks following treatment, the rate of hair growth was much slower in the injured mice treated with the TNF-α blocker. CONCLUSION: Our findings indicate that microinjury stimulates the wound-healing mechanism via TNF-α/Wnt/VEGF surge to induce hair growth, and that blocking TNF-α inhibits this growth process.


Assuntos
Fator de Necrose Tumoral alfa , Fator A de Crescimento do Endotélio Vascular , Camundongos , Animais , Fator A de Crescimento do Endotélio Vascular/metabolismo , Camundongos Endogâmicos C57BL , Cicatrização , Cabelo/metabolismo , Regeneração
4.
Nat Rev Cardiol ; 20(6): 373-385, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36627513

RESUMO

Myocardial infarction (MI), as a result of thrombosis or vascular occlusion, is the most prevalent cause of morbidity and mortality among all cardiovascular diseases. The devastating consequences of MI are compounded by the complexities of cellular functions involved in the initiation and resolution of early-onset inflammation and the longer-term effects related to scar formation. The resultant tissue damage can occur as early as 1 h after MI and activates inflammatory signalling pathways to elicit an immune response. Macrophages are one of the most active cell types during all stages after MI, including the cardioprotective, inflammatory and tissue repair phases. In this Review, we describe the phenotypes of cardiac macrophage involved in MI and their cardioprotective functions. A specific subset of macrophages called resident cardiac macrophages (RCMs) are derived from yolk sac progenitor cells and are maintained as a self-renewing population, although their numbers decrease with age. We explore sophisticated sequencing techniques that demonstrate the cardioprotective properties of this cardiac macrophage phenotype. Furthermore, we discuss the interactions between cardiac macrophages and other important cell types involved in the pathology and resolution of inflammation after MI. We summarize new and promising therapeutic approaches that target macrophage-mediated inflammation and the cardioprotective properties of RCMs after MI. Finally, we discuss future directions for the study of RCMs in MI and cardiovascular health in general.


Assuntos
Infarto do Miocárdio , Remodelação Ventricular , Humanos , Remodelação Ventricular/fisiologia , Infarto do Miocárdio/terapia , Coração , Macrófagos , Inflamação , Miocárdio/metabolismo
5.
Immunohorizons ; 6(11): 760-767, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445359

RESUMO

Highly effective combination antiretroviral therapy has reduced HIV infection to a manageable chronic disease, shifting the clinical landscape toward management of noninfectious comorbidities in people living with HIV (PLWH). These comorbidities are diverse, generally associated with accelerated aging, and present within multiple organ systems. Mechanistically, immune dysregulation and chronic inflammation, both of which persist in PLWH with well-controlled virally suppressive HIV infection, are suggested to create and exacerbate noninfectious comorbidity development. Persistent inflammation often leads to fibrosis, which is the common end point pathologic feature associated with most comorbidities. Fibrocytes are bone marrow-derived fibroblast-like cells, which emerged as key effector cells in tissue repair and pathologic fibrotic diseases. Despite their relevance to fibrosis, the circulating fibrocyte concentration in PLWH remains poorly characterized, and an understanding of their functional role in chronic HIV is limited. In this study, utilizing PBMCs from a cross-sectional adult HIV cohort study with matched uninfected controls (HIV-), we aimed to identify and compare circulating fibrocytes in blood. Both the percentage and number of fibrocytes and α-smooth muscle actin+ fibrocytes in circulation did not differ between the HIV+ and HIV- groups. However, circulating fibrocyte levels were significantly associated with increasing age in both the HIV+ and HIV- groups (the percentage and number; r = 0.575, p ≤ 0.0001 and r = 0.558, p ≤ 0.0001, respectively). Our study demonstrates that circulating fibrocyte levels and their fibroblast-like phenotype defined as collagen I and α-smooth muscle actin+ expression are comparable between, and strongly associated with, age irrespective of HIV status.


Assuntos
Infecções por HIV , Humanos , Infecções por HIV/tratamento farmacológico , Estudos de Coortes , Estudos Transversais , Actinas , Inflamação , Fibrose
6.
Metabolites ; 13(1)2022 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-36676986

RESUMO

Chronic HIV infection has long been associated with an increased risk for cardiovascular diseases. The metabolites of the renin−angiotensin system (RAS) such as angiotensin II (AngII) play an important role in regulating blood pressure and fluid dynamics. Cross-sectional analysis of HIV-positive individuals (n = 71, age > 40 years, stable ART > 3 months with HIV viral load < 50 copies/mL) were compared to a similar HIV seronegative group (n = 72). High-resolution B-mode ultrasound images of the right carotid bifurcation (RBIF) and right common carotid artery (RCCA) were conducted to measure the extent of carotid atherosclerotic vascular disease. Plasma RAS peptide levels were quantified using a liquid chromatography-mass spectrometry-based metabolomics assay. RAS peptide concentrations were compared between persons with HIV and persons without HIV, correlating their association with clinical and cardiac measures. Median precursor peptides (Ang(1-12) and AngI) were significantly higher in the HIV-positive group compared to the HIV-negative. Analyses of the patient subgroup not on antihypertensive medication revealed circulating levels of AngII to be four-fold higher in the HIV-positive subgroup. AngII and TNF-alpha levels were found to have a positive association with RCCA, and AngI/Ang(1-12) ratio and TNF-alpha levels were found to have a positive association with RBIF. In both predictive models, AngIII had a negative association with either RCCA or RBIF, which may be attributed to its ability to bind onto AT2R and thus oppose pro-inflammatory events. These results reveal systemic alterations in RAS as a result of chronic HIV infection, which may lead to the activation of inflammatory pathways associated with carotid thickening. RAS peptide levels and cytokine markers were associated with RCCA and RBIF measurements.

7.
Clin Sci (Lond) ; 135(24): 2763-2780, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34854902

RESUMO

The aim of the present study was to evaluate the effect of Compound 21 (C21), a selective AT2R agonist, on the prevention of endothelial dysfunction, extracellular matrix (ECM) remodeling and arterial stiffness associated with diet-induced obesity (DIO). Five-week-old male C57BL/6J mice were fed a standard (Chow) or high-fat diet (HF) for 6 weeks. Half of the animals of each group were simultaneously treated with C21 (1 mg/kg/day, in the drinking water), generating four groups: Chow C, Chow C21, HF C, and HF C21. Vascular function and mechanical properties were determined in the abdominal aorta. To evaluate ECM remodeling, collagen deposition and TGF-ß1 concentrations were determined in the abdominal aorta and the activity of metalloproteinases (MMP) 2 and 9 was analyzed in the plasma. Abdominal aortas from HF C mice showed endothelial dysfunction as well as enhanced contractile but reduced relaxant responses to Ang II. This effect was abrogated with C21 treatment by preserving NO availability. A left-shift in the tension-stretch relationship, paralleled by an augmented ß-index (marker of intrinsic arterial stiffness), and enhanced collagen deposition and MMP-2/-9 activities were also detected in HF mice. However, when treated with C21, HF mice exhibited lower TGF-ß1 levels in abdominal aortas together with reduced MMP activities and collagen deposition compared with HF C mice. In conclusion, these data demonstrate that AT2R stimulation by C21 in obesity preserves NO availability and prevents unhealthy vascular remodeling, thus protecting the abdominal aorta in HF mice against the development of endothelial dysfunction, ECM remodeling and arterial stiffness.


Assuntos
Aorta Abdominal/efeitos dos fármacos , Dieta Hiperlipídica/efeitos adversos , Imidazóis/farmacologia , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Rigidez Vascular/efeitos dos fármacos , Animais , Anti-Inflamatórios/farmacologia , Colágeno/metabolismo , Masculino , Metaloproteinase 2 da Matriz/sangue , Metaloproteinase 9 da Matriz/sangue , Camundongos Endogâmicos C57BL , Obesidade/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Fator de Crescimento Transformador beta1/sangue
8.
J Clin Invest ; 131(17)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34623330

RESUMO

The heart forms early in development and delivers oxygenated blood to the rest of the embryo. After birth, the heart requires kilograms of ATP each day to support contractility for the circulation. Cardiac metabolism is omnivorous, utilizing multiple substrates and metabolic pathways to produce this energy. Cardiac development, metabolic tuning, and the response to ischemia are all regulated in part by the hypoxia-inducible factors (HIFs), central components of essential signaling pathways that respond to hypoxia. Here we review the actions of HIF1, HIF2, and HIF3 in the heart, from their roles in development and metabolism to their activity in regeneration and preconditioning strategies. We also discuss recent work on the role of HIFs in atherosclerosis, the precipitating cause of myocardial ischemia and the leading cause of death in the developed world.


Assuntos
Aterosclerose/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Coração/crescimento & desenvolvimento , Isquemia Miocárdica/metabolismo , Miocárdio/metabolismo , Animais , Aterosclerose/etiologia , Fatores de Transcrição Hélice-Alça-Hélice Básicos/deficiência , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Humanos , Fator 1 Induzível por Hipóxia/metabolismo , Precondicionamento Isquêmico Miocárdico , Redes e Vias Metabólicas , Camundongos , Camundongos Knockout , Modelos Cardiovasculares , Isquemia Miocárdica/etiologia , Neovascularização Patológica , Neovascularização Fisiológica
9.
Adv Biol (Weinh) ; 5(11): e2100638, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34590446

RESUMO

Cholesterol crystals (CCs) were first discovered in atherosclerotic plaque tissue in the early 1900 and have since been observed and implicated in many diseases and conditions, including myocardial infarction, abdominal aortic aneurism, kidney disease, ocular diseases, and even central nervous system anomalies. Despite the widespread involvement of CCs in many pathologies, the mechanisms involved in their formation and their role in various diseases are still not fully understood. Current knowledge concerning the formation of CCs, as well as the molecular pathways activated upon cellular exposure to CCs, will be explored in this review. As CC formation is tightly associated with lipid metabolism, the role of cellular lipid homeostasis in the formation of CCs is highlighted, including the role of lysosomes. In addition, cellular pathways and processes known to be affected by CCs are described. In particular, CC-induced activation of the inflammasome and production of reactive oxygen species, along with the role of CCs in complement-mediated inflammation is discussed. Moreover, the clinical manifestation of embolized CCs is described with a focus on renal and skin diseases associated with CC embolism. Lastly, potential therapeutic measures that target either the formation of CCs or their impact on different cell types and tissues are highlighted.


Assuntos
Colesterol , Placa Aterosclerótica , Proteínas do Sistema Complemento , Humanos , Inflamassomos , Mediadores da Inflamação
10.
Arterioscler Thromb Vasc Biol ; 41(6): 1837-1838, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34038166
11.
Clin Sci (Lond) ; 135(9): 1145-1163, 2021 05 14.
Artigo em Inglês | MEDLINE | ID: mdl-33899912

RESUMO

Compound 21 (C21), a selective agonist of angiotensin II type 2 receptor (AT2R), induces vasodilation through NO release. Since AT2R seems to be overexpressed in obesity, we hypothesize that C21 prevents the development of obesity-related vascular alterations. The main goal of the present study was to assess the effect of C21 on thoracic aorta endothelial function in a model of diet-induced obesity (DIO) and to elucidate the potential cross-talk among AT2R, Mas receptor (MasR) and/or bradykinin type 2 receptor (B2R) in this response. Five-week-old male C57BL6J mice were fed a standard (CHOW) or a high-fat diet (HF) for 6 weeks and treated daily with C21 (1 mg/kg p.o) or vehicle, generating four groups: CHOW-C, CHOW-C21, HF-C, HF-C21. Vascular reactivity experiments were performed in thoracic aorta rings. Human endothelial cells (HECs; EA.hy926) were used to elucidate the signaling pathways, both at receptor and intracellular levels. Arteries from HF mice exhibited increased contractions to Ang II than CHOW mice, effect that was prevented by C21. PD123177, A779 and HOE-140 (AT2R, Mas and B2R antagonists) significantly enhanced Ang II-induced contractions in CHOW but not in HF-C rings, suggesting a lack of functionality of those receptors in obesity. C21 prevented those alterations and favored the formation of AT2R/MasR and MasR/B2R heterodimers. HF mice also exhibited impaired relaxations to acetylcholine (ACh) due to a reduced NO availability. C21 preserved NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways. In conclusion, C21 favors the interaction among AT2R, MasR and B2R and prevents the development of obesity-induced endothelial dysfunction by stimulating NO release through PKA/p-eNOS and AKT/p-eNOS signaling pathways.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Imidazóis/uso terapêutico , Proteínas Proto-Oncogênicas/metabolismo , Receptor Tipo 2 de Angiotensina/agonistas , Receptor B2 da Bradicinina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sulfonamidas/uso terapêutico , Tiofenos/uso terapêutico , Doenças Vasculares/prevenção & controle , Animais , Aorta Torácica/efeitos dos fármacos , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Dieta Hiperlipídica , Avaliação Pré-Clínica de Medicamentos , Células Endoteliais da Veia Umbilical Humana , Humanos , Imidazóis/farmacologia , Masculino , Camundongos Endogâmicos C57BL , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Obesidade/complicações , Obesidade/metabolismo , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptor Cross-Talk , Receptor Tipo 2 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia , Tiofenos/farmacologia , Doenças Vasculares/etiologia , Doenças Vasculares/metabolismo
12.
Sci Rep ; 11(1): 3881, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33594095

RESUMO

ABCC6 deficiency promotes ectopic calcification; however, circumstantial evidence suggested that ABCC6 may also influence atherosclerosis. The present study addressed the role of ABCC6 in atherosclerosis using Ldlr-/- mice and pseudoxanthoma elasticum (PXE) patients. Mice lacking the Abcc6 and Ldlr genes were fed an atherogenic diet for 16 weeks before intimal calcification, aortic plaque formation and lipoprotein profile were evaluated. Cholesterol efflux and the expression of several inflammation, atherosclerosis and cholesterol homeostasis-related genes were also determined in murine liver and bone marrow-derived macrophages. Furthermore, we examined plasma lipoproteins, vascular calcification, carotid intima-media thickness and atherosclerosis in a cohort of PXE patients with ABCC6 mutations and compared results to dysmetabolic subjects with increased cardiovascular risk. We found that ABCC6 deficiency causes changes in lipoproteins, with decreased HDL cholesterol in both mice and humans, and induces atherosclerosis. However, we found that the absence of ABCC6 does not influence overall vascular mineralization induced with atherosclerosis. Decreased cholesterol efflux from macrophage cells and other molecular changes such as increased pro-inflammation seen in both humans and mice are likely contributors for the phenotype. However, it is likely that other cellular and/or molecular mechanisms are involved. Our study showed a novel physiological role for ABCC6, influencing plasma lipoproteins and atherosclerosis in a haploinsufficient manner, with significant penetrance.


Assuntos
Aterosclerose/etiologia , Dislipidemias/etiologia , Proteínas Associadas à Resistência a Múltiplos Medicamentos/deficiência , Pseudoxantoma Elástico/complicações , Animais , Ácidos e Sais Biliares/sangue , Feminino , Humanos , Macrófagos/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Pseudoxantoma Elástico/sangue , Estudos Retrospectivos
13.
Platelets ; 32(8): 1038-1042, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33222575

RESUMO

There are approximately 38 million people globally living with Human immunodeficiency virus 1 (HIV-1) and given the tremendous success of combination antiretroviral therapy (cART) this has dramatically reduced mortality and morbidity with prevention benefits. However, HIV-1 persists during cART within the human body and re-appears upon cART interruption. This HIV-1 reservoir remains a barrier to cure with cellular sites of viral persistence not fully understood. In this study we provide evidence corroborating a recently published article in STM demonstrating the role of platelets as a novel cellular disseminator of HIV-1 particles in the setting of viral suppression. Using classical transmission electron microscopy with and without immunogold labeling, we visualize HIV-1 in both platelets and monocytes in cART suppressed HIV donors. Our study suggests that due to the close proximity of platelets and monocytes an alternative life cycle of HIV-1 cycling within monocytes and platelets without the need of active replication under cART occurs. Our findings are supported by the lack of detectable HIV-1 particles in platelets derived from HIV uninfected donors or the 'Berlin' patient suggesting that platelets may serve as an underappreciated hidden bearer for HIV-1 and should be considered in HIV remission studies and trials.


Assuntos
Plaquetas/metabolismo , Infecções por HIV/sangue , HIV-1/patogenicidade , Humanos
14.
Front Physiol ; 11: 714, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32655419

RESUMO

OBJECTIVE: To determine whether overexpression of the chitin degrading enzyme, chitotriosidase (CHIT1), modulates macrophage function and ameliorates atherosclerosis. APPROACH AND RESULTS: Using a mouse model that conditionally overexpresses CHIT1 in macrophages (CHIT1-Tg) crossbred with the Ldlr -/- mouse provided us with a means to investigate the effects of CHIT1 overexpression in the context of atherosclerosis. In vitro, CHIT1 overexpression by murine macrophages enhanced protein expression of IL-4, IL-8, and G-CSF by BMDM upon stimulation with a combination of lipopolysaccharide (LPS) and interferon-γ (IFN-γ). Phosphorylation of ERK1/2 and Akt was also down regulated when exposed to the same inflammatory stimuli. Hyperlipidemic, Ldlr -/--CHIT1-Tg (CHIT1-OE) mice were fed a high-fat diet for 12 weeks in order to study CHIT1 overexpression in atherosclerosis. Although plaque size and lesion area were not affected by CHIT1 overexpression in vivo, the content of hyaluronic acid (HA) and collagen within atherosclerotic plaques of CHIT1-OE mice was significantly greater. Localization of both ECM components was markedly different between groups. CONCLUSIONS: These data demonstrate that CHIT1 alters cytokine expression and signaling pathways of classically activated macrophages. In vivo, CHIT1 modifies ECM distribution and content in atherosclerotic plaques, both of which are important therapeutic targets.

15.
EBioMedicine ; 59: 102876, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32646751

RESUMO

BACKGROUND: Inflammation plays an important role in the development of cardiovascular disease (CVD). Patients with chronic inflammation diseases have high levels of inflammation and early fatal myocardial infarction due to early, unstable coronary plaques. Cholesterol crystals (CC) play a key role in atherogenesis. However, the underlying mechanisms of endothelial cell (EC)-derived CC formation are not well understood in chronic inflammation. METHODS: We utilized a combination of a mouse psoriasis model (K14-Rac1V12 mouse model) and human psoriasis patients to study the effect of inflammatory cytokines on CC formation in ECs. Lysosomal pH, alterations in lipid load and inflammatory proteins were evaluated as potential mechanisms linking inflammatory cytokines to CC formation. Coronary CT angiography was performed (n = 224) to characterize potential IFNγ and TNFα synergism on vascular diseases in vivo. FINDINGS: We detected CC presence in the aorta of K14-Rac1V12 mice on chow diet. IFNγ and TNFα were found to synergistically increase LDL-induced CC formation by almost 2-fold. There was an increase in lysosomal pH accompanied by a 28% loss in pH-dependent lysosomal signal and altered vATPaseV1E1 expression patterns. In parallel, we found that LDL+IFNγ/TNFα treatments increased free cholesterol content within EC and led to a decrease in SOAT-1 expression, an enzyme critically involved cholesterol homeostasis. Finally, the product of IFNγ and TNFα positively associated with early non-calcified coronary burden in patients with psoriasis (n = 224; ß = 0.28, p < 0.001). INTERPRETATION: Our results provide evidence that IFNγ and TNFα accelerate CC formation in endothelial cells in part by altering lysosomal pH and free cholesterol load. These changes promote early atherogenesis and contribute to understanding the burden of CVD in psoriasis. FUNDING: Funding was provided by the Intramural Research Program at NIH (NNM) and the National Psoriasis Foundation (NNM and YB).


Assuntos
Colesterol/metabolismo , Células Endoteliais/metabolismo , Hiperlipidemias/metabolismo , Interferon gama/metabolismo , Lisossomos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Adulto , Idoso , Animais , Células Cultivadas , Colesterol/química , Citocinas/sangue , Citocinas/metabolismo , Modelos Animais de Doenças , Células Endoteliais/patologia , Feminino , Citometria de Fluxo , Homeostase , Humanos , Concentração de Íons de Hidrogênio , Hiperlipidemias/sangue , Hiperlipidemias/etiologia , Mediadores da Inflamação/metabolismo , Cristais Líquidos , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Psoríase/etiologia , Psoríase/metabolismo , Psoríase/patologia , Transdução de Sinais
17.
Pharm Biol ; 58(1): 400-409, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32420784

RESUMO

Context: Although Salvia plebeia (SP) R. Brown (Labiatae) is known to possess various biological activities, the effects of SP on hair growth have not been elucidated.Objective: To investigate the hair growth potential of SP extract by using human dermal papilla cells (hDPCs) and C57BL/6 mice.Materials and methods: The entire SP plant sample was ground into powder and extracted with 99.9% methyl alcohol. Various concentrations of SP extract were added to hDPCs to evaluate the proliferation, migration, and factors related to hair growth and cycling. Effect of topical SP administration on hair regrowth was tested in vivo in male C57BL/6 mice for 21 days.Results: SP extract significantly increased the proliferation of cultured hDPCs at doses of 15.6 and 31.3 µg/mL compared to control group by 123% and 132%, respectively. Expression of hepatocyte growth factor increased while the level of TGF-ß1 and SMAD2/3 decreased when treated with SP extract. At the molecular level, the extract activated Wnt/ß-catenin signalling by raising ß-catenin and phospho-GSK3ß expression. SP extract also exerted anti-apoptotic and proliferative effects in hDPCs by increasing the Bcl-2/Bax ratio and activating cell proliferation-related proteins, ERK and Akt. Finally, the extract caused an induction of the anagen phase leading to significantly enhanced hair growth in treated male mice.Discussion and conclusion: Our results indicate that SP extract has the capacity to activate hDPCs into a proliferative state to promote hair growth. Further research is necessary to determine the bioactive components and their mechanisms of action responsible for SP-related hair growth effect.


Assuntos
Folículo Piloso/efeitos dos fármacos , Folículo Piloso/crescimento & desenvolvimento , Extratos Vegetais/farmacologia , Salvia , Animais , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Cabelo/citologia , Cabelo/efeitos dos fármacos , Cabelo/crescimento & desenvolvimento , Folículo Piloso/citologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/isolamento & purificação
18.
Cond Med ; 3(1): 18-30, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34268485

RESUMO

Acute myocardial infarction (AMI), and the heart failure (HF) that often follows, are leading causes of death and disability worldwide. Crucially, there are currently no effective treatments, other than myocardial reperfusion, for reducing myocardial infarct (MI) size and preventing HF following AMI. Thus, there is an unmet need to discover novel cardioprotective therapies to reduce MI size, and prevent HF in AMI patients. Although a large number of therapies have been shown to reduce MI size in experimental studies, the majority have failed to benefit AMI patients. Failure to deliver cardioprotective therapy to the ischemic heart in sufficient concentrations following AMI is a major factor for the lack of success observed in previous clinical cardioprotection studies. Therefore, new strategies are needed to improve the delivery of cardioprotective therapies to the ischemic heart following AMI. In this regard, nanoparticles have emerged as drug delivery systems for improving the bioavailability, delivery, and release of cardioprotective therapies, and should result in improved efficacy in terms of reducing MI size and preventing HF. In this article, we provide a review of currently available nanoparticles, some of which have been FDA-approved, in terms of their use as drug delivery systems in cardiovascular disease and cardioprotection.

19.
Atherosclerosis ; 287: 100-111, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31247346

RESUMO

BACKGOUND AND AIMS: The low-density lipoprotein receptor-deficient (Ldlr-/-) mouse has been utilized by cardiovascular researchers for more than two decades to study atherosclerosis. However, there has not yet been a systematic effort to document the ultrastructural changes that accompany the progression of atherosclerotic plaque in this model. METHODS: Employing several different staining and microscopic techniques, including immunohistochemistry, as well as electron and polarized microscopy, we analyzed atherosclerotic lesion development in Ldlr-/- mice fed an atherogenic diet over time. RESULTS: Lipid-like deposits occurred in the subendothelial space after only one week of atherogenic diet. At two weeks, cholesterol crystals (CC) formed and increased thereafter. Lipid, CC, vascular smooth muscles cells, and collagen progressively increased over time, while after 4 weeks, relative macrophage content decreased. Accelerated accumulation of plate- and needle-shaped CC accompanied plaque core necrosis. Lastly, CC were surrounded by cholesterol microdomains, which co-localized with CC through all stages of atherosclerosis, indicating that the cholesterol microdomains may be a source of CC. CONCLUSIONS: Here, we have documented, for the first time in a comprehensive way, atherosclerotic plaque morphology and composition from early to advanced stages in the Ldlr-/- mouse, one of the most commonly used animal models utilized in atherosclerosis research.


Assuntos
Aorta Torácica/ultraestrutura , Colesterol/metabolismo , Músculo Liso Vascular/ultraestrutura , Placa Aterosclerótica/patologia , Animais , Aorta Torácica/metabolismo , Células Cultivadas , Cristalização , Modelos Animais de Doenças , Feminino , Imuno-Histoquímica , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Microscopia Eletrônica de Transmissão e Varredura , Músculo Liso Vascular/metabolismo , Placa Aterosclerótica/metabolismo
20.
Int J Mol Sci ; 20(10)2019 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-31109146

RESUMO

Cardiovascular diseases are the leading cause of mortality worldwide. It is widely known that non-resolving inflammation results in atherosclerotic conditions, which are responsible for a host of downstream pathologies including thrombosis, myocardial infarction (MI), and neurovascular events. Macrophages, as part of the innate immune response, are among the most important cell types in every stage of atherosclerosis. In this review we discuss the principles governing macrophage function in the healthy and infarcted heart. More specifically, how cardiac macrophages participate in myocardial infarction as well as cardiac repair and remodeling. The intricate balance between phenotypically heterogeneous populations of macrophages in the heart have profound and highly orchestrated effects during different phases of myocardial infarction. In the early "inflammatory" stage of MI, resident cardiac macrophages are replaced by classically activated macrophages derived from the bone marrow and spleen. And while the macrophage population shifts towards an alternatively activated phenotype, the inflammatory response subsides giving way to the "reparative/proliferative" phase. Lastly, we describe the therapeutic potential of cardiac macrophages in the context of cell-mediated cardio-protection. Promising results demonstrate innovative concepts; one employing a subset of yolk sac-derived, cardiac macrophages that have complete restorative capacity in the injured myocardium of neonatal mice, and in another example, post-conditioning of cardiac macrophages with cardiosphere-derived cells significantly improved patient's post-MI diagnoses.


Assuntos
Doenças Cardiovasculares/imunologia , Imunidade Inata , Macrófagos/imunologia , Miocárdio/imunologia , Animais , Doenças Cardiovasculares/patologia , Doenças Cardiovasculares/fisiopatologia , Doenças Cardiovasculares/terapia , Coração/fisiopatologia , Humanos , Macrófagos/patologia , Infarto do Miocárdio/imunologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Infarto do Miocárdio/terapia , Miocárdio/citologia , Miocárdio/patologia , Fatores de Proteção , Remodelação Ventricular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...